Modeling The Business Cycle Part II - Net Income And Investment

Gary Schurman, MBE, CFA
October, 2020

In this white paper we will build a model that calculates net income and investment for a company whose revenues are correlated with the business cycle. To that end we will work through the following hypothetical problem from Part I...

Our Hypothetical Problem

In Part I we were tasked with forecasting revenue for ABC Company. The table below presents ABC Company's go-forward model assumptions...

Table 1: Model Assumptions

Description	Balance	Notes
Annualized revenue at time zero (in thousands)	$\$ 10,000$	Current revenue annualized
Annualized revenue growth rate (\%)	5.00	Discrete-time secular growth rate (RGR)
Annualized revenue volatility (\%)	25.00	Secular growth rate standard deviation
Assets as a percent of annualized revenue (\%)	60.00	Total assets divided by annualized revenue
Return on assets (\%)	13.50	After-tax ROA
Peak-to-trough change in revenue (\%)	50.00	Excludes secular growth rate
Business cycle length in months	60	Peak-to-peak or trough-to-trough

We are tasked with answering the following questions:
Question 1: What is cumulative net income in year 2?
Question 2: What is cumulative net investment in year 2 ?
Question 3: Graph net income, investment and the earnings growth rate over the first 10 years.

Annualized Revenue

In Part I we defined the variable R_{t} to be cyclical random annualized revenue at time t, the variable g to be the secular revenue growth rate, the variable Δ to be the business cycle amplitude, the variable ω to be the length of the business cycle in years, and the variable ϕ to be the current position in the business cycle in years. The equation for expected annualized revenue is... [1]

$$
\begin{equation*}
\mathbb{E}\left[R_{t}\right]=R_{0}(1+\Delta \sin (\beta \phi))^{-1} \operatorname{Exp}\{\lambda t\}(1+\Delta \sin (\beta(t+\phi))) \ldots \text { where } \ldots \lambda=\ln (1+g) \ldots \text { and } \ldots \beta=\frac{2 \pi}{\omega} \tag{1}
\end{equation*}
$$

Note that we can rewrite Equation (1) above as...

$$
\begin{equation*}
\mathbb{E}\left[R_{t}\right]=R_{0}(1+\Delta \sin (\beta \phi))^{-1}(\operatorname{Exp}\{\lambda t\}+\Delta \operatorname{Exp}\{\lambda t\} \sin (\beta(t+\phi))) \tag{2}
\end{equation*}
$$

Using Appendix Equation (20) below we can rewrite Equation (2) above as...

$$
\begin{equation*}
\mathbb{E}\left[R_{t}\right]=R_{0}(1+\Delta \sin (\beta \phi))^{-1}\left(E_{1}+\Delta E_{2}\right) \tag{3}
\end{equation*}
$$

Using Equation (3) above and Appendix Equations (24) and (25) below the equation for the derivative of expected annualized revenue with respect to time is...

$$
\begin{align*}
\frac{\delta}{\delta t} \mathbb{E}\left[R_{t}\right] & =R_{0}(1+\Delta \sin (\beta \phi))^{-1}\left(\frac{\delta}{\delta t} E_{1}+\Delta \frac{\delta}{\delta t} E_{2}\right) \\
& =R_{0}(1+\Delta \sin (\beta \phi))^{-1} \operatorname{Exp}\{\lambda t\}(\lambda+\Delta \lambda \sin (\beta(t+\phi))+\Delta \beta \cos (\beta(t+\phi))) \tag{4}
\end{align*}
$$

Assets

We will define the variable A_{t} to be total assets at time t and the variable ϵ to be the ratio of total assets to annualized revenue. Using Equation (3) above the equation for expected total assets at time t from the perspective of time zero is...

$$
\begin{equation*}
\mathbb{E}\left[A_{t}\right]=\epsilon \mathbb{E}\left[R_{t}\right]=\epsilon R_{0}(1+\Delta \sin (\beta \phi))^{-1}\left(E_{1}+\Delta E_{2}\right) \tag{5}
\end{equation*}
$$

Using Equation (4) above the equation for the derivative of total assets with respect to time is...

$$
\begin{equation*}
\frac{\delta}{\delta t} \mathbb{E}\left[A_{t}\right]=\epsilon \frac{\delta}{\delta t} \mathbb{E}\left[R_{t}\right] \delta t=\epsilon R_{0}(1+\Delta \sin (\beta \phi))^{-1} \operatorname{Exp}\{\lambda t\}(\lambda+\Delta \lambda \sin (\beta(t+\phi))+\Delta \beta \cos (\beta(t+\phi))) \tag{6}
\end{equation*}
$$

We will define the variable $M_{a, b}$ to be cumulative investment over the time interval $[a, b]$. Using Equation (6) above the equation for cumulative investment is...

$$
\begin{align*}
M_{a, b} & =\int_{a}^{b} \frac{\delta}{\delta t} \mathbb{E}\left[A_{t}\right] \delta t \\
& =\int_{a}^{b} \epsilon R_{0}(1+\Delta \sin (\beta \phi))^{-1}(\lambda \operatorname{Exp}\{\lambda t\}+\Delta \beta \operatorname{Exp}\{\lambda t\} \cos (\beta(t+\phi))+\Delta \lambda \operatorname{Exp}\{\lambda t\} \sin (\beta(t+\phi))) \delta t \\
& =\epsilon R_{0}(1+\Delta \sin (\beta \phi))^{-1}\left(\lambda \int_{a}^{b} \operatorname{Exp}\{\lambda t\} \delta t+\Delta \beta \lambda \int_{a}^{b} \operatorname{Exp}\{\lambda t\} \cos (\beta(t+\phi)) \delta t+\Delta \lambda \int_{a}^{b} \operatorname{Exp}\{\lambda t\} \sin (\beta(t+\phi)) \delta t\right) \tag{7}
\end{align*}
$$

Using Appendix Equations (21), (22) and (23) below we can rewrite Equation (7) above as...

$$
\begin{equation*}
M_{a, b}=\epsilon R_{0}\left(\lambda I(a, b)_{1}+\Delta \beta I(a, b)_{3}+\Delta \lambda I(a, b)_{2}\right) \tag{8}
\end{equation*}
$$

Net Income

We will define the variable N_{t} to be annualized net income at time t and the variable π to be the after-tax return on assets. Using Equation (5) above the equation for expected annualized net income at time t is...

$$
\begin{equation*}
N_{t}=\pi \mathbb{E}\left[A_{t}\right]=\epsilon \pi \mathbb{E}\left[R_{t}\right] \tag{9}
\end{equation*}
$$

Using Equation(6) above the derivative of annualized net income with respect to time is...

$$
\begin{equation*}
\frac{\delta}{\delta t} N_{t}=\pi \frac{\delta}{\delta t} \mathbb{E}\left[A_{t}\right]=\epsilon \pi \frac{\delta}{\delta t} \mathbb{E}\left[R_{t}\right] \tag{10}
\end{equation*}
$$

We will define the variable $E G R_{t}$ to be the annualized earnings growth rate at time t. Using Equations (1), (4), (9) and (10) above the equation for the earnings growth rate is...

$$
\begin{equation*}
E G R_{t}=\frac{\frac{\delta}{\delta t} N_{t}}{N_{t}}=\frac{\lambda+\Delta(\beta \cos (\beta(t+\phi))+\lambda \sin (\beta(t+\phi)))}{1+\Delta \sin (\beta(t+\phi))} \tag{11}
\end{equation*}
$$

We will define the variable $N_{a, b}$ to be cumulative net income realized over the time interval [$\left.a, b\right]$. Using Equations (5) and (9) above the equation for cumulative net income is...

$$
\begin{equation*}
N_{a, b}=\int_{a}^{b} N_{t} \delta t=\int_{a}^{b} \pi \mathbb{E}\left[A_{t}\right] \delta t=\int_{a}^{b} \pi \epsilon R_{0}(1+\Delta \sin (\beta(t+\phi))) \operatorname{Exp}\{\lambda t\} \delta t \tag{12}
\end{equation*}
$$

Note that we can rewrite Equation (12) above as...

$$
\begin{equation*}
N_{a, b}=\pi \epsilon R_{0}\left(\int_{a}^{b} \operatorname{Exp}\{\lambda t\} \delta t+\Delta \int_{a}^{b} \operatorname{Exp}\{\lambda t\} \sin (\beta(t+\phi)) \delta t\right) \tag{13}
\end{equation*}
$$

Using Appendix Equations (21) and (22) below we can rewrite Equation (13) above as...

$$
\begin{equation*}
N_{a, b}=\pi \epsilon R_{0}\left(I(a, b)_{1}+\Delta I(a, b)_{2}\right) \tag{14}
\end{equation*}
$$

The Answers To Our Hypothetical Problem

Using the data in Table 1 above we will make the following earnings-related variable definitions...

$$
\begin{equation*}
\alpha=\lambda=\ln (1+0.05)=0.0488 \ldots \text { and } \ldots \pi=0.1350 \ldots \text { and } \ldots \epsilon=0.60 \tag{15}
\end{equation*}
$$

Using the data in Table 1 above we will make the following business cycle-related variable definitions...

$$
\begin{equation*}
\omega=\frac{60}{12}=5.00 \ldots \text { and } \ldots \phi=\frac{15}{12}=1.25 \ldots \text { and } \ldots \beta=\frac{2 \pi}{5.00}=1.2566 \ldots \text { and } \ldots \Delta=\frac{0.50}{2}=0.25 \tag{16}
\end{equation*}
$$

Using Equations (15) and (16) above and the appendix equations below the values of the following integrals are...

$$
\begin{equation*}
I(1,2)_{1}=1.07604 \ldots \text { and } \ldots I(1,2)_{2}=-0.31609 \ldots \text { and } \ldots I(1,2)_{3}=-0.95572 \tag{17}
\end{equation*}
$$

Question 1: What is cumulative net income in year 2 ?
Using Equations (14), (15), (16), and (17) above the answer to the question is...

$$
\begin{equation*}
N_{2,3}=0.1350 \times 0.60 \times 10,000,000 \times(1+0.25 \times \sin (1.2566 \times 1.25))^{-1} \times(1.07604+0.25 \times-0.31609)=646,000 \tag{18}
\end{equation*}
$$

Question 2: What is cumulative net investment in year 2?
Using Equations (8), (15), (16), and (17) above the answer to the question is...

$$
\begin{align*}
M_{2,3} & =0.60 \times 10,000,000 \times(1+0.25 \times \sin (1.2566 \times 1.25))^{-1} \times(0.0488 \times 1.07604+0.25 \times 1.2566 \\
& \times-0.95572+0.25 \times 0.0488 \times-0.31609)=-1,208,000 \tag{19}
\end{align*}
$$

Note that during year 2 annualized revenue was decreasing (due to cyclicallity) so assets were also decreasing such that net investment was negative.

Question 3: Graph net income, investment and the earnings growth rate over the first 10 years.

Figure 1: Net Income and Investment

Figure 2: Earnings Growth Rate

Appendix

A. We will define the following equations... [2]

$$
\begin{equation*}
E_{1}=\operatorname{Exp}\{\alpha t\} \ldots \operatorname{and} \ldots E_{2}=\operatorname{Exp}\{\alpha t\} \sin (\beta(t+\phi)) \ldots \operatorname{and} \ldots E_{3}=\operatorname{Exp}\{\alpha t\} \cos (\beta(t+\phi)) \tag{20}
\end{equation*}
$$

B. Using the first equation in Equation (20) above we will make the following integral definition... [2]

$$
\begin{equation*}
I(a, b)_{1}=\int_{a}^{b} E_{1} \delta t=\operatorname{Exp}\{\alpha t\} \alpha^{-1}\left[_{a}^{b}\right. \tag{21}
\end{equation*}
$$

C. Using the second equation in Equation (20) above we will make the following integral definition... [2]

$$
\begin{equation*}
I(a, b)_{2}=\int_{a}^{b} E_{2} \delta t=\operatorname{Exp}\{\alpha t\}(\alpha \sin (\beta(t+\phi))-\beta \cos (\beta(t+\phi)))\left(\alpha^{2}+\beta^{2}\right)^{-1}\left[_{a}^{b}\right. \tag{22}
\end{equation*}
$$

D. Using the third equation in Equation (20) above we will make the following integral definition... [2]

$$
\begin{equation*}
I(a, b)_{3}=\int_{a}^{b} E_{3} \delta t=\operatorname{Exp}\{\alpha t\}(\beta \sin (\beta(t+\phi))+\alpha \cos (\beta(t+\phi)))\left(\alpha^{2}+\beta^{2}\right)^{-1}\left[{ }_{a}^{b}\right. \tag{23}
\end{equation*}
$$

E. Using the first equation in Equation (20) above we will make the following derivative definition... [2]

$$
\begin{equation*}
\frac{\delta}{\delta t} E_{1}=\alpha \operatorname{Exp}\{\alpha t\} \tag{24}
\end{equation*}
$$

F. Using the second equation in Equation (20) above we will make the following derivative definition... [2]

$$
\begin{equation*}
\frac{\delta}{\delta t} E_{2}=\operatorname{Exp}\{\alpha t\}(\alpha \sin (\beta(t+\phi))+\beta \cos (\beta(t+\phi))) \tag{25}
\end{equation*}
$$

G. Using the third equation in Equation (20) above we will make the following derivative definition... [2]

$$
\begin{equation*}
\frac{\delta}{\delta t} E_{3}=\operatorname{Exp}\{\alpha t\}(\alpha \cos (\beta(t+\phi))-\beta \sin (\beta(t+\phi))) \tag{26}
\end{equation*}
$$

References

[1] Gary Schurman, Modeling The Business Cycle - Part I, October, 2020.
[2] Gary Schurman, Modeling The Business Cycle - Mathematical Supplement, October, 2020.

